Three-Component One-Pot Approach to Synthesize Benzopyrano[4,3- d] pyrimidines

Dewen Li, Shudong Duan, and Youhong Hu*
State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zu Chong Zhi Road, Shanghai 201203, China

Received August 14, 2010

Abstract

A novel benzopyrano[4,3-d]pyrimidine scaffold was generated via a three-component one-pot reaction from iodochromone, alkyne, and an amidine through a Sonogashira coupling, condensation, and cycloaddition. This combinatorial synthetic approach provides an efficient, easy construction of a diversified heterocyclic compounds library.

Introduction

High-throughput screening (HTS) is employed extensively in drug research and discovery. There is a strong desire to develop efficient methods and strategies for the combinatorial synthesis of a diversified small molecules library to fill the compound demands of HTS. ${ }^{1}$ To this end, many efficient synthetic methods have been developed, ${ }^{2}$ and one attractive approach is the designation and development of an easily prepared substrate with multireactive sites to promote cascade reactions ${ }^{3}$ or multicomponent reactions ${ }^{4}$ in one-pot process since such a chemical operation would allow for the generation of a large number of diversified complex molecules with a high efficiency.

Benzopyrano[4,3- d]pyrimidine is an important pharmacophore that exhibits anti-inflammatory, antiplatelet, and antithrombotic activities. ${ }^{5}$ Relatively few papers have reported on the formation of benzopyrano[4,3- d]pyrimidines with a limited substitution from 3-formylchromone or its equivalents by condensation. ${ }^{6}$ Herein, we report on an efficient combinatorial synthesis of substituted benzopy-rano[4,3- d]pyrimidines from a three-component one-pot tandem process in good to excellent yields.

Results and Discussion

Chromone, as a 1,3-diketone equivalent, can be condensed with amidine to form o-hydroxyphenyl pyrimidine. ${ }^{7}$ We envisioned the hydroxyl group of phenol as being a nucleophile that could take place in a further nucleophilic cyclization with an adjacent triple bond to generate a benzopyra-no[4,3- d] pyrimidine scaffold from intermediate \mathbf{A}, which could be generated from iodochromone, alkyne, and amidine through a Sonogashira coupling/condensation/cycloaddition (Path A) or a condensation/Sonogashira coupling/cycloaddition (Path B). In this one-pot process, the palladium species could play a dual role as (i) a Sonogashira coupling catalyst and (ii) as an activating reagent for the triple bond, and a

[^0]large number of benzopyrano[4,3-d]pyrimidines with three diversified positions could be constructed efficiently (Scheme $1)$.

We evaluated the cascade reaction of iodochromone $\mathbf{1}\{1\}$ with phenylacetylene $\mathbf{2}\{1\}$ and methyl carbamimidate sulfate $\mathbf{3}\{1\}$ under the different conditions (Table 1) to identify the appropriate reaction conditions for this hypothesis. Only intermediate \mathbf{B} was detected when the reaction, catalyzed by $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{CuI}(10 \mathrm{~mol} \%)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ or DIPEA (4.0 equiv) as a base, was carried out at room temperature for 2 h . On increasing the reaction temperature to $60^{\circ} \mathrm{C}$ and stirring for 6 h , the desired product $\mathbf{4}\{1,1,1\}$ was not observed, and the reaction was maintained at the stage of intermediate \mathbf{B} alone (Table 1, entries 1 and 2). We speculated that $\mathrm{Et}_{3} \mathrm{~N}$ or DIPEA as a weak organic base could not promote the condensation reaction to form intermediate \mathbf{A} and process the final cyclization. When employed DBU as a strong base, the desired product $\mathbf{4}\{1,1,1\}$ was obtained in 30% yield, along with the dimeric byproduct of B^{8} (Table 1 , entry 3). On changing the base to inorganic

Scheme 1. Designed Tandem Process to Form
Benzopyrano[4,3- d]pyrimidines

Table 1. Screening Solvent Systems and Bases for the One-Pot Reaction ${ }^{a}$

	 2	3		
entry		base	solvent	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Et}_{3} \mathrm{~N}$ (4.0 equiv)		DMF	0
2	DIPEA (4.0 equiv)		DMF	0
3	DBU (4.0 equiv)		DMF	30
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv)		DMF	63
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4.0 equiv)		DMF	25
6	NaOH (4.0 equiv)		DMF	7
7	DIPEA (2.0 equiv)) $+\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv)	DMF	85
8	DIPEA (2.0 equiv)) $+\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv)	Toluene	25
9	DIPEA (2.0 equiv)) $+\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv)	THF	48
10	DIPEA (2.0 equiv)) $+\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv)	$\mathrm{CH}_{3} \mathrm{CN}$	48

${ }^{a}$ Reaction conditions: A mixture of $0.20 \mathrm{mmol} 1\{1\}, 1.5$ equiv. of $\mathbf{2}\{1\}, 1.5$ equiv. of $\mathbf{3}\{1\}, 5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, and $10 \mathrm{~mol} \% \mathrm{CuI}$ in solvent (2.0 mL) was heated at $60^{\circ} \mathrm{C}$ for 6 h . ${ }^{b}$ Isolated yield based on iodochromone. DIPEA $=N, N$-diisopropylethylamine, THF $=$ tetrahydrofuran, and DMF $=N, N$-dimethylformamide.

Figure 1. ORTEP plot of $\mathbf{4}\{1,1,1\}$ shown with ellipsoids at the 50% level. ${ }^{9}$
$\mathrm{K}_{2} \mathrm{CO}_{3}$, the yield of $\mathbf{4}\{1,1,1\}$ was improved to 63% significantly (Table 1, Entry 4). Other inorganic bases, such as $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and NaOH , gave the product in low yield. The combination of DIPEA (2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) promoted the reaction smoothly to give the product in 85% yield (Table 1, entry 7). A control experiment was carried out using a mixture of iodochromone $\mathbf{1}\{1\}$ with methyl carbamimidate sulfate $\mathbf{3}\{1\}$ (1.5 equiv) with DIPEA (2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($5 \mathrm{~mol} \%$) and $\mathrm{CuI}(10 \mathrm{~mol} \%)$ in DMF at room temperature for 2 h , and no intermediate \mathbf{C} was detected. After the addition of phenylacetylene $\mathbf{2}\{1\}$, intermediate \mathbf{B} was formed the final product was obtained by heating the mixture at 60 ${ }^{\circ} \mathrm{C}$. This result showed that pathway A is the major pathway for forming the designed product. DMF was found to be the best solvent system on screening other solvents for the reaction. The configuration of the product $4\{1,1,1\}$ was unambiguously established as the Z form from X-ray crystal structure analysis (Figure 1).

To inspect this approach, particularly with regard to library construction, this methodology was evaluated using different

2

3

6

3

4

5
iodochromones 1\{1-6\}

alkynes 2\{1-5\}

Figure 2. Chemsets employed in the Sonogashira coupling/ condensation and cycloaddition protocol.
substituted iodochromones ${ }^{10}$ and alkynes (Figure 2) with $3\{1\}$ under the optimized reaction conditions. The results are shown in Table 2 . On changing the electronic and steric properties $\left(R^{2}\right)$ on the acetylene moiety the corresponding products were afforded in moderate to good yields (Table 2 , entries $1-4)$. An electron-donating group $\left(\mathrm{R}^{1}=\mathrm{OMe}\right)$ at the 6-position or 7-position of iodochromone (Table 2, entries 5 and 6) gave the corresponding product in a reasonable yield. Apparently, an electron-withdrawing group $\left(\mathrm{R}^{1}=\mathrm{NO}_{2}\right.$ or Br) at the 6-position of iodochromone (Table 2, Entries 8 and 9) afforded complicated products, and isolated $\mathbf{4}\{5,1,1\}$ and $\mathbf{4}\{6,1,1\}$ in 15% and 18% yields, respectively.

When the reaction was extended to other amidines $\mathbf{3}\{2-7\}$ (Figure 2), only $\mathbf{3}\{2\}$ and $\mathbf{3}\{3\}$ was successfully transformed to the corresponding product in 65% and 68% yield, respectively. It is worth noting that amidines $\mathbf{3}\{1-3\}$ with an electron-donating group preceded the formation of the desired product in one-pot tandem process smoothly. Amidines $3\{4-7\}$ gave only a trace amount of the desired product. On carefully checking the reaction process, we did not find the formation of intermediate \mathbf{B} at room temperature. On heating the reaction mixture, a small amount of the desired product was generated with a polar major product 5 , which was identified as an imidazole scaffold. A plausible reaction mechanism is shown in Scheme. 2. Under basic conditions, amidines without an electron-donating group can directly undergo a Michael addition with iodochromone and pyrone ring-opening to produce the intermediate \mathbf{D}. An intramo-

Table 2. Reaction of Various Iodochromones $\mathbf{1}$ and Alkynes $\mathbf{2}$ with Methyl Carbamimidate $\mathbf{3}\{1\}^{a}$

	 1			
Entry	Substrate 1	Substrate 2	Product 4	Yield(\%) ${ }^{\text {b }}$
1				61
2	1\{1\}			75
3	$1\{1\}$	$\equiv<_{2\{4\}}$		74
4	$1\{1\}$			48
5	 1\{2\}			45
6	 1\{3\}	2\{1\}		43
7	 1\{4\}	2\{1\}		66
8	 1\{5\}	2\{1\}		15
9	 1\{6\}	2\{1\}		18

${ }^{a}$ Unless otherwise stated, the reaction was carried out using Method A. ${ }^{b}$ Isolated yield based on iodochromone $\mathbf{1}$.
lecular $\mathrm{S}_{\mathrm{N}} 2$ reaction with iodide instead of condensation with a carbonyl group would generate imidazole $\mathbf{5}$ as the major pathway.
A sequential process was applied, where a mixture of iodochromone $\mathbf{1}\{1\}$ and alkyne $\mathbf{2}\{1\}$ was stirred under the Sonogashira coupling conditions for 2 h at ambient temper-
ature, followed by addition with different amidines and $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h to give the desired product $\mathbf{4}\{1,1,2-7\}$ in good to excellent yields (Table 3). The 1D-NOEDIFF of $\mathbf{4}\{1,1,7\}$ was further confirmed the Z configuration ($>95 \%$) of the desired product. The condensation and cycloaddition proceeded well without

Scheme 2. Plausible Reaction Mechanism to Generate 5

the electronic and steric affect of the substituent amidines after the Sonogashira coupling. When applied this sequential one-pot process to the different alkynes and iodochromones, the yields of the reactions in Table 2 were increased to $55 \%-90 \%$. In particular, substrates $\mathbf{1}\{5\}$ and $\mathbf{1}\{6\}$ gave the corresponding product $\mathbf{4}\{5,1,1\}$ and $\mathbf{4}\{6,1,1\}$ in 55% and 60% yields. From our investigation, this sequential one-pot
process should generate a broad substituted benzopyrano[4,3$d]$ pyrimidines library with three diversified points efficiently.

Conclusion

In conclusion, we have developed an efficient approach to generate a diversified benzopyrano[4,3-d]pyrimidines library in moderate to good yields via a sequential one-pot reaction of iodochromones, alkynes, and amidines by a Sonogashira coupling, condensation, and cycloaddition. Further library generation and biological evaluation of these compounds is currently under way.

Experimental Section

Method A for the Synthesis of Benzopyrano[4,3-d]pyrimidine. Iodochromone (0.2 mmol), alkyne (1.5 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{CuI}(0.02 \mathrm{mmol})$, amidine (1.5 equiv), and mixed bases of DIPEA (2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) were dissolved in DMF (2.0 mL). The mixture was stirred at room temperature for 2 h and then heated at

Table 3. Reaction of Iodochromone $\mathbf{1}\{1\}$ and Ethynylbenzene $\mathbf{2}\{1\}$ with Various Amidines $\mathbf{3}^{a}$

Entry

[^1]$60^{\circ} \mathrm{C}$ for 6 h . The reaction was monitored by TLC. After the reaction was complete, the resulting mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(25 \mathrm{~mL}$ $\times 3$), and the combined organic layers were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product, which was further purified by column chromatography.
(Z)-5-Benzylidene-2-phenyl-5H-benzopyrano[4,3- d]pyrimidine $\mathbf{4}\{1,1,1\}$. With $\mathbf{1}\{1\}, \mathbf{2}\{1\}$, and $\mathbf{3}\{1\}$ as substrates, method A was followed then the product was purified by column chromatography (silica gel, $15: 1$ petroleum ether/ ethyl acetate) to afford $\mathbf{4}\{1,1,1\}(85 \%)$ as a bright yellow solid. Melting point: $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \quad \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.12(\mathrm{~s}, 3 \mathrm{H}) 6.11(\mathrm{~s}, 1 \mathrm{H}) 7.10-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.62 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{dd}, J=7.92,1.76 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.4,155.3,155.2$, $154.8,144.3,134.7,133.8,128.6,128.4,126.5,124.9,123.1$, 118.4, 116.3, 115.4, 102.9, 55.2. MS (ESI): $m / z 303.1$ (M $+\mathrm{H})^{+}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 303.1128; found 303.1128.

Method B for the Synthesis of Benzopyrano[4,3-d]pyrimidine. Iodochromone (0.2 mmol), alkyne (1.5 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{CuI}(0.02 \mathrm{mmol})$, and DIPEA (2.0 equiv) were dissolved in DMF (2.0 mL) and stirred at room temperature for 2 h . Then, amidine (1.5 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) were added to the mixture, and this was heated at $60^{\circ} \mathrm{C}$ for 6 h . The reaction was monitored by TLC. After the reaction was complete, the resulting mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(25 \mathrm{~mL} \times 3)$, and the combined organic layers were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product, which was further purified by column chromatography.
(Z)-5-Benzylidene-2-(methylthio)-5H-benzopyrano[4,3d]pyrimidine $\mathbf{4}\{1,1,2\}$. With $\mathbf{1}\{1\}, 2\{1\}$, and $\mathbf{3}\{2\}$ as substrates, method B was followed then the product was purified by column chromatography (silica gel, 20:1 petroleum ether/ethyl acetate) to afford $\mathbf{4}\{1,1,2\}(86 \%)$ as yellow solid. Melting point: $156-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.66(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.62$ $\mathrm{Hz}, 2 \mathrm{H}), 8.27(\mathrm{dd}, J=8.05,1.61 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,155.2,152.5,152.2$, $144.2,134.6,133.7,128.7,128.4,126.7,124.8,123.1,118.3$, 116.4, 103.8, 14.3. MS (EI): m/z 318, ($\left.\mathrm{M}^{+}, 100\right)$. HRMS (EI) calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}: 318.0827$; found 318.0819.

Acknowledgment. We are grateful for financial support from National Science \& Technology Major Project "Key New Drug Creation and Manufacturing Program" (2009ZX-09301-001) and National Natural Science Foundation of China (30873142).

Supporting Information Available. Representative experimental procedure and mass, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 4 and crystallographic data CCDC
772029. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Walsh, D. P.; Chang, Y. T. Chem. Rev. 2006, 106, 24762530. (b) Arya, P.; Chou, D. T. H.; Baek, M. G. Angew. Chem., Int. Ed 2001, 40, 339-346. (c) Schreiber, S. L. Science 2000, 287, 1964-1969.
(2) (a) Moos, W. H.; Hurt, C. R.; Morales, G. A. Mol. Diversity 2009, 13, 241-245. (b) Ganem, B. Acc. Chem. Res. 2009, 42, 463-472. (c) Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales, G. A.; Thomas, C. J.; Zhang, W. J. Comb. Chem. 2009, 11, 739-790. (d) Edwards, P. J. Drug Discovery Today 2009, 14, 108-110.
(3) (a) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993-3009. (b) Alba, A. N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432-1474. (c) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439-4486.
(4) (a) Hugel, H. M. Molecules 2009, 14, 4936-4972. (b) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149-3159. (c) D'Souza, D. M.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095-1108. (d) Willy, B.; Müller, T. J. J. Curr. Org. Chem. 2009, 13, 1777-1790. (e) Willy, B.; Müller, T. J. J. ARKIVOC 2008, part i, 195-208. (f) Sakai, H.; Tsutsumi, K.; Morimoto, T.; Kakiuchi, K. Adv. Synth. Catal. 2008, 350, 2498-2502.
(5) (a) Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Ballabeni, V.; Barocelli, E. Bioorg. Med. Chem. 2004, 12, 553-61. (b) Bruno, O.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Bertoni, S.; Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem. 2001, 9, 629-636. (c) Bruno, O.; Brullo, C.; Bondavalli, F.; Ranise, A.; Schenone, S.; Tognolini, M.; Ballabeni, V.; Barocelli, E. Med. Chem. 2007, 3, 127-34. (d) Bruno, O.; Brullo, C.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Tognolini, M.; Magnanini, F.; Ballabeni, V. Il Farmaco 2002, 57, 753-758.
(6) (a) Mulwad, V. V.; Hegde, A. S. Indian J. Heterocycl. Chem. 2009, 18, 219-222. (b) Strakova, L.; Petrova, M.; Belyakov, S.; Strakovs, A. Chem. Heterocycl. Compd. 2007, 43, 793798. (c) Ibrahim, H. K.; Hassanen, J. A. Egyptian J. Chem. 2007, 50, 403-423. (d) An, H.; Eum, S. J.; Koh, M.; Lee, S. K.; Park, S. B. J. Org. Chem. 2008, 73, 1752-1761. (e) Bruno, O.; Brullo, C.; Ranise, A.; Schenone, S.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem. Lett. 2001, 11, 1397400. (f) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P.; Sarkar, S.; Ghosh, S. K.; Biswas, P. Tetrahedron 2003, 59, 2151-2157. (g) Loewe, W. Arch. Pharm. 1977, 310, 559563.
(7) (a) Frasinyuk, M. S.; Khilya, V. P. Chem. Heterocycl. Compd. 1999, 35, 3-22. (b) Khilya, V. P.; Turov, A. V.; Tkschuk, T. M.; Shevchuk, L. I. Chem. Nat. Compd. 2001, 37, 307310. (c) Sosnovskikh, V. Y.; Usachev, B. I.; Yu, A.; Barabanov, M. A. Synthesis-Stuttgart 2004, 942-948. (d) Xie, F. C.; Li, S. K.; Bai, D. L.; Lou, L. G.; Hu, Y. H. J. Comb. Chem. 2007, 9, 12-13. (e) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451-3454.
(8) Xie, F. C.; Pan, X.; Lin, S. J.; Hu, Y. H. Org. Biomol. Chem. 2010, 8, 1378-1381.
(9) CCDC 772029 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(10) Vasselin, D. A.; Westwell, A. D.; Matthews, C. S.; Bradshaw, T. D.; Stevens, M. F. G. J. Med. Chem. 2006, 49, 3973-3981.

CC100173B

[^0]: * To whom correspondence should be addressed. E-mail: yhhu@ mail.shenc.ac.en.

[^1]: ${ }^{a}$ Unless otherwise stated, the reaction was carried out using method B. ${ }^{b}$ Isolated yield based on iodochromone $\mathbf{1}\{1\}$. ${ }^{c}$ The yield in parentheses was obtained according to method A.

